Nucleation and growth of polycrystalline SiC
نویسندگان
چکیده
The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar pressure at 2250°C in diffusion limited mass transport regime generating a convex shaped growth form of the solid-gas interface leading to lateral expansion of virtually [001] oriented crystallites. Growth at 2350°C led to the stabilization of 6H polytypic grains. The micropipe density in the bulk strongly depends on the substrate used.
منابع مشابه
Model of morphology evolution in the growth of polycrystalline b-SiC films
The growth of b-SiC films via chemical vapor deposition (CVD) has been under intensive investigation because this is viewed to be an enabling material for a variety of new semiconductor devices in areas where silicon cannot effectively compete. However, the difficulty in achieving single-crystal or highly textured surface morphology in films with low bulk defect density has limited the use of b...
متن کاملThermal annealing of SiC nanoparticles induces SWNT nucleation: evidence for a catalyst-independent VSS mechanism.
Density-functional tight-binding molecular dynamics (DFTB/MD) methods were employed to demonstrate single-walled carbon nanotube (SWNT) nucleation resulting from thermal annealing of SiC nanoparticles. SWNT nucleation in this case is preceded by a change of the SiC structure from a crystalline one, to one in which silicon and carbon are segregated. This structural transformation ultimately resu...
متن کاملDeterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor−Liquid−Solid Growth Mode
A method for growth of ultralarge grain (>100 μm) semiconductor thin-films on nonepitaxial substrates was developed via the thin-film vapor−liquid−solid growth mode. The resulting polycrystalline films exhibit similar optoelectronic quality as their single-crystal counterparts. Here, deterministic control of nucleation sites is presented by substrate engineering, enabling user-tuned internuclei...
متن کاملTwisting bilayer graphene superlattices.
Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers...
متن کاملProgress in 3C-SiC growth and novel applications
Recent research efforts in growth of 3C-SiC are reviewed. Sublimation growth is addressed with an emphasis on the enhanced understanding of polytype stability in relation to growth conditions, such as supersaturation and Si/C ratio. It is shown that at low temperature/supersaturation spiral 6H-SiC growth is favored, which prepares the surface for 3C-SiC nucleation. Provided the supersaturation ...
متن کامل